

Analysis of planes with fuselages

Rev. 1.0 - © A. Deperrois - November 2019

Fuselage influence

Cautionary note

- The inclusion of the fuselages in the analyses is not a click-run process.
- It requires careful construction of the geometries and of the surface mesh.
- A critical analysis of the results should always be performed.

Content

- Part I: Preliminary considerations
- Part II: Quad face type fuselage
- Part III: NURBS type fuselage
- Part IV: STL type fuselage
- Part V: STEP type fuselage

Geometry and surfaces

Close the volumes

• All panel methods require that the union of mesh elements define one or multiple closed, non-intersecting volumes.

Close the volumes

- The OpenCascade API requires that the wings must form closed SOLIDs to cut the fuselage shell → close the wing T.E.
- In the case of half-wings, such as the fin, check carefully if the inner section needs to be closed or not

Triangle mesh

The mesher

- The triangle mesh is built by a custom advancing front type mesher
- It expects the geometry to be defined as a union of faces, defined by closed contours, and without free edges
- It will perform well in the vast majority of cases
- It may fail or diverge in the case of small edges
 - Simplify and clean the geometry before importing it into flow5
 - ➡ Watch out for small edges which may be created at the intersection of fuselage edges and wing panels

Triangle connections

- To avoid numerical issues, triangle elements should be connected at their nodes
- Not strictly necessary, but will improve the quality of the results
- Done automatically for quad meshes
- Done automatically for wing and fuselage triangular meshes
- Manual correction may be required wheif an edge of the fuselage geometry cuts the wing root section

Checking triangle connections

- Connect the triangles
 - Can be done manually using the menu option
 - Done automatically when running the analysis
- Display the free edges; the only free edges should be:
 - the wing trailing edges; the upper surface is not connected to the lower surface to create a vortex and to apply the Kutta condition
 - The side surfaces of the wings

X

Wake panels

- The wake panels which extend downstream from the wings trailing edges should not intersect the fuselage nor other wings
- Select a polar and use the context menu item "Mesh/ Show wake panels"

Interactions between wake and fuselage panels

- The numerical interactions between wake and fuselage panels lead to unrealistic pressure coefficients which mess up the calculation of moments
- Recommendation: disable the inclusion of the fuselage's contribution in the evaluation of moments.

 Linear Density Triangular Panels 	
Wings as	
○ Thin surfaces	
Fuselage moments	
☐ Include the contribution of fuselage inviscid moments	

Doublet densities and pressure coefficients

Gammax1000.0 43.56

Doublet densities

A panel analysis solves the linear system for the doublet densities on the panels. All other results are deduced from the doublet densities.

37.20 30.83 24.47 A smooth distribution of the 18.11 doublet densities is a good indicator of the quality of the 1.74 analysis and of its results • If the color scale indicates that -7.35 there are local numerical issues, -13.71 then the triangle mesh should be -20.08 improved -26.44 -32.80

Doublet densities

Pressure coefficients - Cp

- The pressure coefficients (Cp) are calculated from the surface gradient of the doublet densities.
- This requires that the elements be connected at their nodes
- The calculation is tricky when adjacent panels are not in the same plane such as at the junction of wings and fuselages
- It only impacts the moments which are calculated from pressure forces acting on the panels.
- It does not impact the lift and drag calculated in the far-field plane
- Potential to improve the precision of the Cp coefficients in the linear case

 \rightarrow to be evaluated in the $\beta\text{-phase}$

Design options

Wings as <u>thin</u> surfaces

- Rules
 - Wings must not extend inside the volume defined by the fuselage
- flow5 enforces this rule
- Notes
 - Numerical issues may occur where the wing joins the fuselage
- Recommendation
 - Not the preferred method

- The analysis must use the quad or triangle panel methods not the VLM
- The connection of fuselage and wing mesh elements is only implemented for the triangle panel methods
- Points to watch
 - Quality of the triangle elements at the junction of wing and fuselage
 - Connections of wing and fuselage triangles

Fuselage drag

- Fuselages do not shed wakes, and therefore do not create induced drag or lift.
- Fuselages generate friction drag; two friction drag models are implemented in flow5 :
 - The Karman-Schoenherr model
 - The Prandlt-Schlichting model
 - Additional drag models may be implemented in the future.

Recommendations

Recommendations

- The current robust, recommended method is to use the thick triangular panel method, with linear doublet densities.
- Simplify and clean the fuselage geometry before importing it into flow5; more specifically, be sure to remove all small edges.
- To reduce the mesh size, define the fuselage with flat faces.

